
1 Heat Conductivity

1.1 Introduction

Plasmas are generally not in equilibrium with their surroundings. In particular,
laboratory plasmas are sustained by a power source, usually electromagnetic,
and lose part of this energy through heat conduction. This is why we want to
describe this phenomenon. In today’s exercises, we will create a simple model
of heat conductivity in a plasma.

1.2 The φ-equation

In plasma physics, many transportable parameters can be described by a general
transport equation:

∂ρφ

∂t
+ ~∇ · (ρ~uφ) = ~∇ · (Γφ∇φ) + Sφ (1)

Here, ρ is the density, φ is the parameter, t is the time, ~u is the velocity, Γφ is
a general diffusion coefficient, and Sφ is a source.

We can describe heat conductivity with this equation. For doing this, we
start out with the specific (per mass) enthalpy equation:

∂ρh

∂t
+ ~∇ · (ρ~uh) = ~∇ · (Γh∇h) + Sh (2)

Here, h is the specific enthalpy. Because it is very uncommon to use the specific
enthalpy rather than the enthalpy, we will rewrite this to

∂H

∂t
+ ~∇ · (~uH) = ~∇ · (ΓH∇H) + SH (3)

with H the enthalpy per unit volume. If our heat capacity is constant, we use

H = cpT (4)

with cp the heat capacity and T the temperature. We thus obtain:

∂T

∂t
+ ~∇ · (~uT) = ~∇ ·

(
λ

cp
∇T

)
+

SH

cp
(5)

with λ the heat conductivity.1

1.3 Heat conduction in a bar

Install the program in a directory of your choice. There should be 2 C++ files:
plasma.h with the functions you will need, and example1.cpp. By including
plasma.h in a .cppfile, you can use its functions. By calling the right functions
in the .cpp file, using standard programming techniques and appropriate values
of physical constants, you can make simulations.

1This is tricky, because φ-variables are supposed to be extensive, and the temperature
is intensive. This derivation is a sketch of how to get around this problem. Pay very keen
attention on the units—SH should be in Km−3, λ is in Wm−1K−1 and cp is in JK−1.

1

First, we will discuss the contents of plasma.h

We will now look at the example, which is in fact a working simulation of
heat conductivity in a bar. At line 3, plasma.h is included. As you know, C++
programs always begin with a main function. We start out by creating a grid.
This function takes three arguments: the first one is the number of grid cells,
the second the physical coordinates of the left coordinate, and the right one the
coordinates of the right side. Note that this does not uses units: you should
therefore make sure you either make the problem dimensionless, an approach
which is often taken in fluid mechanics, or make sure you use a consistent set
of units. We will use the SI system — make sure you don’t accidentally use eV
in describing energies or temperatures.

Next, we define the bulk (convective) flow. In this case, there is none, so
we use the ZeroFlow. We are going to simulate a rod that is isolated on the
left end. ”Isolated”, or no heat flux out of it, means that the derivative of the
temperature is zero. Boundary conditions that specify derivatives are named
after Neumann. Because it is isolated, the derivative is zero; this is known
as a Homogeneous Neumann boundary condition. We make such a boundary
condition by calling Plasma::NeumannBC temp left(0,0) The first number is
the value of the derivative, while the second is a linerarization factor, which
is not commonly used2. We cool the wall at the right boundary. Here, we
assume we have a perfect device for keeping the temperature at a fixed value,
in this case, 20 K. Specifying an exact value for the boundary point is known
as a Dirichlet boundary condition, and we create one by Plasma::DirichletBC
temp right(20);.

Next, we make a temperature field, defined on this grid. The first argument
is the grid, the second the flow field, the third is the left boundary condition,
and the last is the right boundary condition. This creates an instance of the
class, also known as an object. If you structure your program right, such an
object corresponds to a real concept, in our case, the φ-variable. It, therefore,
contains all the things it needs, like the boundary conditions, the source terms,
the value of the field, etc. This grouping of things that belong together in a
programming structure is called encapsulation.

Next, we define heat conductivity. This is the gamma member. The [i] refers to
the number of the grid cell. We next set a constant source sc, which represent
a constant heating per unit length.

Finally, we compute our result by calling Update() to solve the discretized
equation. We next write the result to console, by iterating over the grid and
writing to standard out.

Exercise 1 Compile the program, and run it. Comment on the output.
2It becomes useful when the derivative depends linearly on the φ, for instance, with wall

reactions.

2

1.4 Heat conduction in a plasma

Our next objective will be to simulate heat conductivity in a system that resem-
bles a plasma. Create a new folder, and copy the C++ files there. To simulate
the ”plasma”, we will have to come up with guesstimates of the heat conductiv-
ity, the heat production, the wall temperature, and the size of the plasma. We’ll
start out with a high-pressure plasma, with parameters resembling a cascaded
arc.

For a cascaded arc, the diameter is about 2 mm. We also know that a cascaded
arc is made of copper, which has a good heat conductivity, through which cooling
water flows. This leads us to think the wall temperature of the plasma will be
close to the temperature of the cooling water, or 300 K.

The hardest part will be the heat conductivity. An approximate formula for
the heat conductivity of the heavy particles in a plasma is give on the formula
sheet. We see the heat conductivity depends on various parameter, so we’ll
need to make an estimate of those. The atom-atom collision cross section of the
gas in the arc, argon, is simply a circle with twice the atom radius of argon,
142 pm (www.webelements.com), which has an area of 6.33·10−20 m2. This is
a typical value for these kind of cross sections — although noble gases have
somewhat small atomic radii. Next, we have to find the mass of argon. Our
trusty BINAS (or other standard reference of choice) tells us an argon atom
weighs 6.623·10−26 kg. For computing the heat capacity of the heavy particles
in the arc, we need to know the heavy particle density; you may assume it is
equal to 1.6·1023 Next, we spot a problem: The heat conductivity depends on
the heavy particle temperature, the very thing we try to solve! We’ll discuss a
way of handling this in the next question; for now, we notice it only depends
on the square root of the temperature, and with a guess of 2000 K for the
temperature, we are hopefully not too far off. Finally, we need an estimate of
the power density. The cascaded arc has a current of approximately 50 amperes
flowing through it, with a voltage drop of about 1000 V/m.

Exercise 2 Compute the heat dissipation density

Exercise 3 Compute the thermal conductivity

Exercise 4 Use these parameters in a model. Do you think the results are
realistic?

1.5 Iterative solution strategy

As we noticed in 1.4, the heat conductivity in the plasma is a function of the
temperature itself. We can solve this by using an iterative procedure. In an
iterative procedure, you start out with a guessed field. You use this guess to
compute the new values of the parameters which depend on the field. You then
use these parameters to solve the field. This field can be used to obtain new
values of the parameters, which are used to solve a new field, etc. This technique
may cause the field to come ever closer to the solution of the problem; this is
called convergence. It is, however, not guaranteed that the field will converge,
or that it will converge to the right solution.

3

Exercise 5 Derive an equation for the heat conductivity as a function of tem-
perature.

Exercise 6 Create an iterative procedure to solve the temperature in the cas-
caded arc. First, you should assign a reasonable starting value for the iterative
procedure to every point of the temperature field. You should also assign the
heat source you computed in Exercise 1.4. Then, create a for-loop that itera-
tively solves the heat conductivity at each grid point, the temperature at each
grid point, and writes the result to screen. 10 iterations should suffice given a
reasonable starting value.

Exercise 7 Rerun the code, but use a poor value of the starting condition this
time (20000K). Can you explain these oscillations?

In order to get sufficiently accurate results in a minimum of time, we want
to terminate the iteration when the result is sufficiently close to the converged
value. The update() procedure returns the so-called residual, which is an in-
dication for the relative change in the field. When this is a lot less than the
maximum error you want to have, you can terminate the calculation.

Exercise 8 Give an estimate of the residual you think is appropriate for ter-
minating the calculation, and explain why you think this is appropriate.

Exercise 9 Change the code so that it terminates at a residual of 10−6. At the
end of each iteration, write the iteration number and the residual. How many
iterations do you need? We will use this number as a default stop criterium.

1.6 Underrelaxation

In Exercise 7, we noticed that it is possible for the fields to behave quite wild
during the convergence. Because in this case the dependence on temperature is
only modest (a square root), the computation still managed to converge. In a
real plasma, we are normally not so lucky.

A simple technique to stabilize the computation is underrelaxation. In this
case, we compute the new temperature field, and then compute a weighted aver-
age of it and the value of the previous iteration.3 This smoothes out oscillations.
The relative weight of the new solution is called the underrelaxation factor α,
and it should be between 1 and 0.4 The relative weight of the old solution is
then equal to (1-α).

3In practice, the implementation of underrelaxation is different, although the result is the
same as what is obtained by taking the weighted average.

4It is theoretically possible to have an underrelaxation greater than one; This is called
overrelaxation. This amplifies the changes, thus potentially speeding up the convergence. It
does have a strong tendency to cause divergence. Underrelaxation must be smaller than 2; if
it is larger, the problem can never converge.

4

In the code, it is quite easy to specify an underrelaxation. By calling foo.urf=α,
you can set the urf of foo to α.

Exercise 10 Redo Exercise 1.5 using a starting temperature of 300 K, with an
underrelaxation of 1.0, 0.9, 0.5 and 0.1. Notice the dampening of the oscilla-
tions. How many iterations do you need? The final result differs in each case
by much more than the residual. Why?

Exercise 11 Run the code of Exercise 10, for all four underrelaxation factors,
with a starting temperature that is 2000 K. What happens to the number of
iterations?

1.7 The grid

By solving a discretized version of the problem rather than the real problem, we
only obtain an approximate solution. With some exercises, we will now attempt
to show some points when choosing the number of grid cells.

The first issue we have to deal with is stability.

Exercise 12 Set the underrelaxation factor to 1.01, and the starting condition
to 2000 K. Try changing the amount of grid points, and see how the amount
of grid points impacts stability. Note how even a small overrelaxation has a
dramatic impact on stability.

A second issue when choosing the amount of grid cells is computational cost.
For a 1 D system, the amount of is proportional to the number of gridpoints.
For a 2 D system, the solving of the discretized equations becomes highly non-
trivial and computationally expensive. 2 D matrix solvers typically take time
proportional to the amount of grid points to the power 3, and even a modest 32
by 32 grid already has 1024 grid points. In practice, the reduced stability can
make it necessary to use more underrelaxation, reducing convergence speed, and
making convergence even more expensive. Computational cost can put fairly
hard constraints on the maximum grid size you can use: if a computation on a
32 by 32 grid costs you a day, going to 64 by 64 will costs you at least 2 months.

There is, however, and obvious advantage to going to a finer grid: the results
will be more accurate. It is therefore recommended that you use a grid which
is as accurate as possible in real-life applications, given the remarks mentioned
above.

1.8 Conculsion

We have seen how a simple model of heat conductivity in a bar can be made
using standard numerical methods and the physics typical to the problem. We
have used this model to simulate the heat transport in an Ar cascaded arc. We
have seen how to deal with tranport parameters that depend on the parameters
we try to investigate by using iteration. We have investigated the impact of
underrelaxation and grid refinement.

5

The heat transport problem is a key part of almost any plasma. We will use
it in the creation of a more realistic plasma model.

6

