1 Diffusion and reactions

1.1 Introduction

Plasmas are quite reactive. In particular the hot electrons can easily create
many different excited species and ions. Often, it are these excited species or
ions that are the reason the plasma is created. A description of these reactions
is of paramount importance for a good description of the plasma.

In many plasmas, especially low-pressure or smaller plasmas, diffusion plays
an important role. Ambipolar diffusion of electrons and ions to the wall in
particular is an important process in many plasmas. Because diffusion and
reactions are often closely linked, we will opt for a joint description.

1.2 A simple model

We will start our treatment of the diffusion/reaction problem with an extreme
case. There is only one reaction important, which is ionization from the ground
state to the ion state. The formed electron/ion pairs are subsequently destroyed
by diffusion to the wall, where they recombine. We will try to model an argon
plasma that resembles a cascaded arc. For this, we need three things: the size
of the plasma, 0.002 m, the ionization source term and the diffusion coefficient.

Exercise 1 We will assume the electron density is equal to the ion density.
When is this realistic?

Exercise 2 The power density in the cascaded arc is 4-10° Wm™3. Assuming
that a quarter of it is used to produce ions, how many ions are produced per
second? (The ionization energy of argon is 15.759 eV [www.webelements.com])

Exercise 3 Program a function that calculates the ambipolar diffusion coeffi-
cient as a function of heavy particle density, electron temperature and heavy
particle temperature. Given that the heavy particle density is 1.6-10**m=3, the
heavy particle temperature is 10000 K, the electron density is 12000 K, and the
atom-ion collision cross section is Te-19 m?, compute the diffusion coefficient
and have your program compute it as well. HINT: The function should have the
following header:

double ambipolar_diffusion_coefficient(double n0, double Te, double
Th) Programming tip: It’s bad practice to have numbers reperesenting physical
parameters, such as the mass of argon, the charge of an electron, the grid size,
etc. floating around in your code. For starters, it’s not nice to see a number and
not know what it means. Also, it makes it difficult to later change the number.
It is therefore better to declare these numbers as constants and use the constant
in the functions.

Exercise 4 Create two Fields: one for the electron temperature T, and one
for the heavy particle temperature. For the heavy particles, you should set the
boundary temperature at the wall to 300 K. The lighter electrons, on the other
hand, do not effectively cool themselves to the wall. You may assume the tem-
perature gradient for the electrons is 0. Initialize the heavy particle density with

a parabola-like temperature profile, with a top of 10000 K in the center and a
temperature at the wall of 300 K. You may initialize the electron temperature
with a linear profile, with a value of 12000 at the center and 11000 at the wall.
HINT: you can access the physical position of a point with the Compute the
value of the diffusion coefficient on each point. Write to screen the local value
of the electron and heavy particle temperature and of the diffusion coefficient for
each point.

Exercise 5 Write a model that describes the reactions and diffusion in the
plasma. Use the reaction rate sc computed in FExercise 1.2 and the ambipolar
diffusion coefficient function of Exercise 1.2. Create two new fields, neutr_dens
for the neutral density and ion_dens for the ion density. You can represent the
reactive boundary by setting a low density of ions there, for instance 1-10'2 m=3.
These numbers are derived from a real plasma, a cascaded arc source; The central
density should, therefore, resemble the density in the centare of the arc, which
is in the order of 1-10°2 m™3. You do not need an iterative procedure to solve
this, as none of the parameters depend on the parameter you are trying to solve,
but you can use one if you wish. For now, you may use the given value of the
heavy particle density, 1.6-10*3m=3.

1.3 The background gas

When a particle diffuses, the local pressure drops. This will be compensated.
A full treatment of this can be extremely complicated. However, when there
is a single, dominant background gas, we can considerably simplify matters by
assuming it is this background gas which diffuses back and restores the pressure.
In this case, we assume the ground state of argon is so dominant it can act as
this dominant background gas.

Furthermore, the ionization reaction also destroys ground state argon. This
should also be included in the model.

We will take into account both effects by assuming the density of ground state
argon is determined by a constant bulk pressure, minus the partial pressures of
all other plasma constituents.

Exercise 6 Write a function which computes the heavy particle density, as a
function of the pressure, the heavy particle density, the heavy particle temper-
ature and the electron temperature. You can do so by first computing the ion
and electron partial pressure, then use this to compute the ground state pressure,
and then use it to compute the ground state density. Add the function to your
program, using a bulk pressure of 30000 Pa. You will need to make the solution
procedure iterative. Don’t forget to change the value of the diffusion coefficient
with the background particle density, which you will no longer have to compute.
You will also need decent starting values.

Exercise 7 We are now going to use a procedure which computes the heavy
particle density based on another definition of the composition. In this case, we
are going to assume the pressure is constant, but undefined, and that the total
average particle density is some given number. This is very appropriate for a

closed system, where the amount of particles is indeed conserved. Because this
is a fairly complicated problem, a function which can do this is provided on the
website, called calculate buffer_density ! (If you have a lot of time, and like
a challenge, you can try to program it yourself). You should have six fields for
using this function:

e -An average particle densityave_dens.

e -The grid grid.

-A heavy particle density field called neutr_dens.
o -An electron or ion density field called ion_dens.
o -A heavy particle temperature field called Th.

e -An electron temperature field called Te.

Use this procedure in your program, and calculate the densities of electrons and
ions at all points, and also the pressure.

1.4 Three-particle recombination

Apart from diffusion losses, there is another loss mechanism in a plasma: three-
particle recombination. In this process, an ion recombines with an electron,
while a third spectator particle is present.

Exercise 8 Why is this third spectator particle necessary?

Exercise 9 Write a function that computes the three-particle loss rate coeffi-
cient. For argon, assume G is equal to 6, and a kyqie of 1-107° m3s~1. Use
this rate coefficient to compute the three-particle destruction rate. Subtract this
from s..Note how many iterations the computation now takes.

HINT: std: :pow(mantissa, exponent) computes a power.

1.5 Linearization

In Exercise 1.4, we have a source term which is in fact linear in its field. Our
discretization can take this linearity into account. This may result in a more
stable and faster convergence. See Table 1.5 for a list of possible linearizations.
For those interested, Patankar’s book is quite thorough on the subject.

1For those interested in C++ (If you are not one of them, by all means skip this paragraph),
a few remarks on the programming of the calculate_buffer_density procedure: You will
notice the & in the function declaration. This means that the field is passed by reference:
the procedure is manipulating the actual objects, rather than a local copy of the object
(Try removing the & if you are not convinced this is important). Also note the use of the
const const tells the compiler that the contents of the object which is declared const should
not be modified. This is useful for protecting the contents of these objects. For instance,
the calculate_buffer_density has no business messing with the contents of the electron
temperature. (Try modifying the contents of the electron temperature in the function to have
the compiler correct you. An immediate correction by the compiler is much better than only
figuring out your mistake after months.)

Table 1: Possible linearizations of a field ¢ with a linear source term —S. If the
problem converges, all yield the same solution

Description S Sp
Naive —S¢ 0
Natural 0 -5
Extra steep S¢ —25
Unstable —2S5¢ S

Exercise 10 First, we will try the most obvious linearization: just divide the
source term by the ion density, and use it in the linear source term s, (Line 2
in Table 1.5). We will call this —S. What happens with the convergence speed?
And with the answer?

Exercise 11 Nezt, we will go for a steeper linearization. We double the linear
term, and compensating by adding the ion density times S to s..(Line 3 in Table
1.5) Verify for yourself this will result in the same converged solution! Notice
the speedy convergence.

Exercise 12 Finally, we will try something which Patankar says is unstable.
We will use minus two times the ion density times S for s., and S for s,. What
happens with the convergence? How can you fix this problem?

1.6 Conclusion

The final system we have is already quite close to an actual plasma. By adding
heat transport, discussed in the first lesson, heat transfer between electrons and
ions and a more realistic formation rate, we can in fact obtain a reasonable
self-consistent plasma model. As we we will see in the next lesson, this is where
the real problems start.

