
1 A real plasma

1.1 Introduction

In our previous lesson, we have treated the two key parts of a fluid plasma
model: the particle balance and the energy balance. 1. Today, we will gradually
combine these balances to create a full model of a plasma.

1.2 example3.ccp

Simply put,example3.ccp is a possible implementation of the exercises of the
previous lesson. Note, however, that we have included the underrelaxation
factors. We will briefly discuss it.

We begin with a large number of constant declaration. Then, we get the
function that computes the buffer density. After that, some transport coeffi-
cients are computed: ambipolar diffusion and recombination. Then, in the main
function, several fields are created: Fields for the electron and heavy particle
temperatures, and fields for the neutral and ion densities. After that, we see
the initialization loop. Then, the underrelaxation factors are defined. The next
part is the main iteration loop. First, the transport coefficients and sources are
updated. Then, the matrix equations are solved. Finally, the results are written
to log.

1.3 Adding the electron temperature

We will start the completion of our model by including the electron tempera-
ture. The energy contained in the hot electrons is essential for the sustaining
of virtually all plasmas. They are the ones that create the ionizations that re-
plenish the ions lost by diffusion or three-particle recombination. Our goal will
be to describe the ionization, the recombination and the heat conductivity of
the electrons. The first two are important both for the particle reactions and
for the electron energy balance.

Exercise 1 Write a function that given an electron temperature and neutral
density returns the ionization rate per electron (if you would multiply the re-
sult with the electron density, you would get the ionization frequency per cubic
meter.) The rate coefficient is 1·10−15 m3s−1. Use this rate coefficient as the
source term for the particle balance. Use a linear profile of the electron temper-
ature, with a central temperature of 15000 K, and a wall temperature of 13000
K. Compute the electron density.

Exercise 2 Write a function which computes the electron heat conductivity as a
function of electron density, heavy particle density, and electron density. Com-
pute the electron heat conductivity at each point, and write it to log. Check with
the assistents that your value of the heat conductivity is correct.

1In flowing plasmas, the momentum balance may also be quite important. A lot of expertise
in solving the momentum balance has been acquired by fluid mechanics groups. Another
potentially important process we ignore is radiation transport
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Exercise 3 Now, we will add the electron temperature equation. This is an
equation like 5 in week 1. This equation needs three things: A linear source
term sp (0.0 in this case), the transport coefficient gamma, computed in Exercise
2, and a constant source term sc. The latter depends on three things:

• Heat supplied to the plasma. This has been derived in an earlier exercise.

• Heat which is lost due to ionizations. This is basically the amount of par-
ticles created with ionization, which you computed in an earlier exercise,
multiplied with the ionization energy.

• Heat which is gained due to recombination. This is the recombination rate,
which you computed in in an earlier exercise, multiplied by the ionization
energy.

These source terms should be defined in the same loop where you define the
source terms for the particle balance. You should then add a line to solve the
electron temperature equation.

This is in principle enough to solve the system, although you should not forget
to use the greater of the residues for determining when to terminate the loop.
You should also write the electron temperature to log.

To ensure convergence, you may need to use underrelaxation. If this con-
verges, congratulations! This is already a quite reasonable model of the cascaded
arc. This is probably the most complex exercise, so feel free to ask for assistance.

1.4 Adding the heavy particle temperature

For many plasmas, the interaction between electron temperature and electron
density is of paramount importance for a correct description. For some higher-
density plasmas2, the heavy particle temperature can get quite high, and a
substantial amount of heat can be transported through gradients in the heavy
particle temperature. Our system is no exception. We will add an equation for
the heavy particle temperature in much the same way we added an equation for
the electron temperature.

Exercise 4 Add a function which computes the heavy particle heat conductivity
as a function of the heavy particle density. You can use the same function you
used week 1.

Exercise 5 Add a function which computes the electron-heavy particle energy
transfer. You should linearize the function by splitting it in two parts: One
that does not depend on Th and one that depends on Te. Your function should
then compute νea

3me

ma
. This should be subtracted from sp. By multiplying this

with Th, and adding it to sc, you take into account the constant part. Add this
function to the code. Add an sc and and sp to the electron temperature source
terms.

2When a plasma physicist talks about high-density, he or she usually means high-electron
density, and that usually means more than 1·1021 m−3.
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Exercise 6 Add a computation for the heavy particle temperature. In Exer-
cises 4 and 5, you have made functions for the description of the coefficients
of this calculations. You can use those. Don’t forget to adjust the residue for
the residue of the heavy particle calculation, and don’t forget to use proper lin-
earization for the electron-heavy energy transfer, analogous to Exercise 5Write
the heavy particle temperature to screen. You will probably need to adjust the
underrelaxation factors. You will probably notice that it is rather low. Try to
think of a reason why (Hint: It’s on the formula page).

2 Coulomb-dominated plasmas

The results of Exercise 6 point to a very common mistake in modeling: to
use invalid assumptions. The plasma is in a Coulomb-dominated regime. This
means, that the long-range Coulomb interactions between electrons and ions are
more important than the short-range electron-neutral interaction, even though
there are more neutrals than ions. This is amplified by the fact that argon has
a dip in the electron-neutral cross sections for electron energies of around 1 eV.
This is due to quantummechanical effects. All noble gases exhibit this so-called
Ramsauer minimum.

Having identified the problem, we can now try to solve it. There is an ex-
pression for the ion-electron collision frequency, given by:

νei =
3.6 · 10−6n2

e lnΛ
(Te)1.5

(1)

Here, νei is the frequency for the collisions between all electrons and all ions, and
lnΛ is the so-called Coulomb logarithm, which is about 10. The heat transfer
between electrons and ions Sei can now be approximated by:

Sei = νei
me

mh
kb(Te − Th) (2)

with mh the heavy particle mass and me the electron mass.

Exercise 7 Add the electron-ion heat transfer to the computation. The simplest
way to do this is by making use of the similarities between the expression for
the electron-neutral and the electron-ion transfer: both depend on (Te − Th).
It will be difficult to obtain convergence: You’ll need to underrelax all three
phi-variables. Make plots of the electron density, electron temperature, neutral
density and heavy particle temperature.

Exercise 8 If you have time left, you can try to change some parameters, such
as particle density, wall temperature, size, power, etc. and see what the results
are.
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