
The ++ of C++

Jan van Dijk

February 12, 2004

Contents

1 Introduction 1

2 The class concept 2

2.1 species0.c . 2
2.2 species1.c . 3
2.3 species2.cpp . 3
2.4 species3.cpp . 6
2.5 species4.cpp . 7
2.6 species5.cpp . 8

3 Beyond classes 9

3.1 Overview . 9
3.2 Equivalence of built-in and user-defined data types 9

4 Conclusions 11

Abstract

In this text we shall discuss the concept of classes and operator overloading

in C++. Starting from a C implementation of code which creates and manages

variables which represent the mass and charge of a species, step by step we will

show the advantages of an equivalent implementation in C++ which uses classes.

We will then show how C++ allows the programmer to give a meaning to operators

like ’+’, ’-’ et cetra for his user-defined types.

1 Introduction

In this text we will try to give you a feeling for the advantages of using C++
classes in a computational plasma physics situation. The concept we will be

1

int main()
{

double M1, M2;
double Q1, Q2;
M1=1.7e−27;
Q1=0;
M2=3.4e−27;
Q1=1.6e−19; // BUG! Q2 was meant!
// ...
if (Q1=0) { ... } // BUG! Always false!

}

Figure 1: species0.c: A pathological C program in which the mass and charge
of two particles are stored in variables of type double. Please note the two
common mistakes.

dealing with is that of a particle type. In our contrived sample code a particle
will be assumed to have merely two properties: a mass and a charge.

In the next section we will show how classes can be seen as better struc-

tures. Classes have much in common with C-style structures, but will be
shown to have a number of clear advantages.

After the class concept has been introduced, the discussion will move to
the second (and last) subject of this lecture. It will be shown that in C++
the user-defined types can be made to behave just like built-in types (like
int, double et cetera) . More specifically, we will show that species can be
added and multiplied, just like the numbers 1 and 1.

2 The class concept

In a number of steps we will transform an extremely silly program in C into
a beatiful small program in C++ which uses classes. In the course of the
discussion it will be made clear how C++ concepts can be used to better
express the programmer’s intent. In fact, a number of typical programming
errors can be prevented by cleverly controlling rights to access data.

2.1 species0.c

Let’s write some code in which particles are involved. For the moment,
particles have two properties: a mass and a charge. For these propoerties we
may introduce variables of the C(++) built-in type double.

2

If we are dealing with two particles we may call these variables M1, M2,
Q1 and Q2. The creation of these variables, their initialisation and their
usage may look as in the (pathological) C program species0 .c in figure 1.

The program may look contrived, but clearly demonstrates two (common)
mistakes. Firstly, one of the variables is initialised twice, the other not at
all. This is a common copy-paste error.

The second error is the assignment to Q1 in the last line. But is it a bug?
Probably it is, and a comparison of Q1 with 0 was meant. On the other hand,
this is perfectly valid C: an assignment is an expression, the result is the value
which was assigned, 0. As a result the code is equivalent to if (0){} , which
is never going to happen. Worse, because this is valid C(++) the best you
can get is a compiler warning.

In the following sections we will slowly transform this small program in a
C++ program in which classes are used. In the course of the discussion we
will see a number of ways in which the language (C++) provides mechanisms
to prevent the silliest of errors, like the ones above.

2.2 species1.c

Let us first look at the reasons for the erroneous double assignment. Such
errors are more likely to occur in situations where a lot of variables are into
play. That reduces the readability of the code. C provides some support for
structuring the code to improve its readibility, in the form of structures.

Let us look at a rewritten version of the previous program, species1 .c,
in figure 1. Here a structure Species has been introduced which represents
the properties of a particle type. The initialisation is done with a dedicated
function, init species . The data members have m prepended, this is merely
a convention.

With these definitions we have pushed some of the ‘complexity’ of the
code outside the main program in which the functionality is needed. The
code for the structure and the function can be tested and reused, the main
function will be simpler and, as a result, less error-prone.

Unfortunately, there are still two errors in this program. Although the
likelyhood of these errors is smaller in view of the improved readability, the
language cannot prevent such errors from being made.

2.3 species2.cpp

We will slowly address the issues we have just mentioned by using some C++
features. First we rewrite the program to use a feature which is available only
in C++, member functions, see figure 3.

3

struct Species
{

double m M;
double m Q;

};
void init species (Species ∗ s , double M, double Q)
{

s−>m M=M;
s−>m Q=Q;

}

int main()
{

Species s1 , s2;
init species (&s1, 1.7 e−27, 1.6e−19);
init species (&s1, 3.4 e−27, 1.6e−19); // BUG! s2 was meant!

// ...
if (s1 .m Q=0) { ... } // BUG! Always false!

}

Figure 2: species1.c: A (still) pathological C program. A structure of type
Species is introduced which represents the properties of a particle type. The
initialisation of the code is done with a dedicated function.

4

struct Species
{

void init species (double M, double Q)
{

m M=M;
m Q=Q;

}
double m M;
double m Q;

};

int main()
{

Species s1 , s2;
s1. init species (1.7e−27, 1.6e−19);
s1. init species (3.4e−27, 1.6e−19); // BUG! s2 was meant!
// ...
if (s1 .m Q=0) { ... } // BUG! Always false!

}

Figure 3: species2.cpp: A (still) pathological C++ program. The structure
Species now contains not only data, but also the functions which operate
on those data (in this case only the initialisation-member). Inside those
functions we can use the data members of the structure.

5

struct Species
{

Species (double M, double Q)
{

m M=M;
m Q=Q;

}
double m M;
double m Q;

};

int main()
{

Species s1(1.7e−27, 0);
Species s2; // OK. Does not compile
// ...
if (s1 .m Q=0) { ... } // BUG! Always false!

}

Figure 4: species3.cpp: An (even less) pathological C++ program. The mem-
ber init species in the structure has been renamed to Species , the name of
the structure in which it is contained. Such members are called constructors.

In this listing we have made the function which initializes a structure of
type Species part if its definition. In the next version the advantages of this
approach will be made clear, let us for now just appreciate the conceptual
improvement. The bundling of data items and functions which operate on
these data is typical for the C++ concept of structures and classes.

2.4 species3.cpp

In the program spec3 .cpp in figure 4 the member init species in the struc-
ture has been renamed to Species , the name of the structure in which it is
contained. Such members are called constructors. If a structure contains
at least one such members and a variable of the structure type is created,
such a constructor is called. Creation (construction) of such variables is only
possible if the user-provided arguments match those of one of the available
constructors.

As a result, one of the errors we have previously made can be prevented.
Neither the re-initialisation of s1, nor the uninitialised structure s2 is possible:
such code will simply not compile. By providing constructors, the writer of

6

struct Species
{

Species (double M, double Q)
{

m M=M;
m Q=Q;

}
double M() const { return m M; }
double Q() const { return m Q; }

private:
double m M;
double m Q;

};

int main()
{

Species s1(1.7e−27, 1.6e−19);
Species s2(3.4e−27, 1.6e−19);

double charge = s2.Q(); // OK
if (s1 .m Q=0) { ... } // OK. Does not compile
if (s1 .Q ()=0) { ... } // OK. Does not compile

}

Figure 5: species4.cpp: A quite beatiful C++ program. Those data and
functions which are present behind the private: keyword cannot be accessed
from the outside, preventing accidental modification.

a piece of code can ensure that objects are in a well-defined state from the
very moment these are created.

But still we have the erroneous assignment to m Q. Let’s prevent that,
too.

2.5 species4.cpp

In the program species4.cpp in figure 5 we have introduced a new C++
keyword, private. Data and functions which are present behind the private:

keyword cannot be accessed from the outside. Instead, one can obtain the
species’ mass and charge with the help of two new function members, M()

and Q(). This way accidental modification of the structure members is not
possible. The indicated erroneous lines in the program simply cannot be

7

class Species
{

public:
Species (double M, double Q)
{

m M=M;
m Q=Q;

}
double M() const { return m M; }
double Q() const { return m Q; }

private:
double m M;
double m Q;

};

int main()
{

Species s1(1.7e−27, 1.6e−19);
Species s2(3.4e−27, 1.6e−19);

double charge = s2.Q(); // OK
if (s1 .m Q=0) { ... } // OK. Does not compile
if (s1 .Q ()=0) { ... } // OK. Does not compile

}

Figure 6: species5.cpp: An absolutely beatiful C++ program. A class is
almost the same as a struct, but members are private by default and must
be made accessible with th public keyword.

compiled.

2.6 species5.cpp

We finally arrive at the famous concept of classes. A class is almost the
same as a structure but members are private by default1. Members must
explicitly be made accessible with the public keyword.

1The other diferences are of a highly technical nature and go beyond the scope of this

small introduction.

8

3 Beyond classes

3.1 Overview

In the previous sections we have given a very practical introduction to the
concept of classes and structures in C++, tailored to those who are familiar
with C (and, like me, have undoubtedly made the abovementioned errors
numerous times).

At this moment it may seem as if classes can be used only to prevent
silly mistakes in code. Fortunately, there is more to the class concept and to
C++ in general:

• built-in and user-defined data types are equal;

• Class derivation is supported;

• Polymorphism is supported;

• Templates provide a mechanism to write code which works for multiple
data types.

This text will deal with the first topic. It will give you an idea of the expres-
siveness of the language, which facilitates developing testing and debugging
complex projects, like Plasimo. The other topics may be discussed during
the practical exercises which accompany the course.

3.2 Equivalence of built-in and user-defined data types

Bundling related data —like the mass and charge of a specific particle type—
in a structure leads to better-readable code, also in bare C. C structures can
be passed as a single argument to a function, that can then access all of the
members of that particular structure. As an example, appropriately defined
functions can be called as:

int i ;
Species s ;
// initialisation
func of int (i);
func of species (s);

So far, so good. But in reality, in C structures are second-class citizens. For
the built-in types operations like addition, subtraction, multiplication and
division have a well-defined meaning. For user-defined types these concepts
are not defined.

Admittedly, addition is not meaningful for every user-defined type. But
let us consider the Species structure. It would be great if we could express
the formation of a molecule as the addition of atoms, as in

9

Species H;
Species O;
// initialisation of H and O
Species H2O=H+H+O;

In C, this cannot be made to work. There is no way ’+’, ’-’ and the like
can be given a meaning for such user-defined types. (And, as stated before,
creation of a variable and its initialisation are seperate actions.)

In C++, operator overloading is available. That is, the common opera-
tions can be defined for non-built-in types. With the species definitions as
before we can write

int main()
{

Species H(1∗1.6e−27, 0.0);
Species O(16∗1.6e−27, 0.0);
Species H2O=H+H+O;

}

How do we tell the computer what it means to add two particles? The
implementation of the binary addition operator is relatively straightforward.
It looks much like a function, but with a special name, operator+. It returns
a Species object2.

Species operator+(Species s1 , Species s2)
{

double Mtot=s1.M()+s2.M();
double Qtot=s1.Q()+s2.Q();
return Species (Mtot,Qtot);

}

Similarly, multiplication of a Species with an integer could be provided, al-
lowing us to write

int main()
{

Species H(1∗1.6e−27, 0.0);
Species O(16∗1.6e−27, 0.0);
Species H2O=2∗H+O;

}

The implementation of the required operator∗(int n, Species s) is left as an
exercise for the reader.

2Experienced C++ hands will notice that the arguments s1 and s2 should rather be

passed by reference to make the implementation more efficient. Such optimisation issues

are outside the scope of this text

10

4 Conclusions

In this text some nice features of C++ have been unfolded. The remaining
question may be: how does this relate to the course I am following? I am
studying numerical plasma physics, right? The answer is twofold:

• It may help you to understand what happens under the hood in the code
you are dealing with in the practical work which is part of the course.
You may better understand the code which is present in plasma.h; ev-
erything we have said here about the implementation of a Species class
applies to the code in that file as well;

• You may appreciate the software-engineering aspects of the job of nu-
merically modelling (plasma) physics. We have seen that a well-designed
C++ program can be more expressive and less error-prone than its
equivalent in bare C. Such advantages tend to become more important
in complex codes.

You can imagine that a program which is capable of modeling fluid
and kinetic, thermal and non-thermal plasmas, inductive, capacitive
and waveguide EM fields, transport of mass, momentum, energy and
radiation qualifies as such a code.

C++ has helped to develop Plasimo to its present state. But, concluding
with a quote of Bjarne Stroustrup, the inventor of C++:

Good design and the absence of errors cannot be guaranteed merely
by the presence or absence of specific language features.

11

	Introduction
	The class concept
	species0.c
	species1.c
	species2.cpp
	species3.cpp
	species4.cpp
	species5.cpp

	Beyond classes
	Overview
	Equivalence of built-in and user-defined data types

	Conclusions

