
Polymorphism — implementing boundary

conditions using virtual functions

Jan van Dijk

February 19, 2004

Contents

1 The Φ Equation 1

2 Formulation of the Boundary Conditions 2

3 Hello, Boundary Condition 4

4 Using Classes 4

5 Base Classes and Derivation 7

6 Base Classes and Polymorphism 10

7 Summary & Conclusions 12

Abstract

In this text we shall discuss how C++ classes, class derivation and polymor-

phism can be used for the implementation of code which handles the boundary

conditions of discretised Φ-equations. The code which will be presented here is

based on the code which has been used in the practical work which is part of the

numerical plasma course.

1 The Φ Equation

In the numerical plasma physics course we have seen many examples of
convection-diffusion equations. These are second-order partial differential

1

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

PW

N

S

w

s

n

E,e

Figure 1: Boundary grid point layout. Note that the distance between the
last interior point and the boundary is half the cell size. The boundary point
lies on the eastern control volume face.

equations which, in a generalised form, can be written as

∂αΦ

∂t
+ ~∇ · ρVβΦ − ~∇ · D∇Φ = SΦ. (1)

The discretisation of such equations has been discussed extensively, the result
is that in each interior point an equation of the following form arises:

aPΦP =
∑

nb

anbΦnb + b. (2)

In these equation P denotes a nodal grid point, while aP and anb are the
discretisation coefficients. The subscript nb denotes the direct neighbours
of P . The exact form of the coefficients anb and aP does not matter here,
but we mention the property aP =

∑

nb anbΦnb. Finally, b is the source term,
integrated over the control volume.

2 Formulation of the Boundary Conditions

In order to solve the equation, we must provide boundary conditions. We may
provide either the value of the variable Φ at the boundaries (Dirichlet con-
ditions), the derivative (Neumann conditions) or use a mixed form (Cauchy
conditions).

We will consider the grid point layout as depicted in figure 1. Suppose
that we wish to impose a Dirichlet boundary condition at the eastern grid

2

boundary, E in the figure. How do we incorporate the known value in the
discretised equation for the point P next to the boundary? This turns out
to be trivial. We start with the discretised transport equation for the point
P and isolate the term involving ΦE,

aP ΦP =
∑

nb′

anb′Φnb′ + aEΦE + b. (3)

Here the prime indicates that the sum runs over all neighbours except the
point E. Now the value ΦE is known, ΦE = Φb, say. Substitution yields

aPΦP =
∑

nb′

anb′Φnb′ + aEΦb + b. (4)

In the computer code, we may implement this as the following sequence of
steps (in this order!):

ΦE → Φb;

b → b + aEΦb;

aE → 0. (5)

The incorporation of Neumann conditions is not too different. Let us assume
that the derivative at the eastern boundary is given by

∂Φ

∂dx

∣

∣

∣

∣

∣

E

= F0 + F1ΦE, (6)

where F1 is a negative number. Suppose that the distance between the
nodal point and the eastern boundary point is given by δ. Then we may
approximate the derivative as (ΦE − ΦP)/δ to obtain

ΦE − ΦP

δ
≈ F0 + F1ΦE. (7)

We may rewrite this equation to obtain the value at the eastern boundary
point,

ΦE ≈
δF0 + ΦP

1 − δF1

. (8)

Now we may proceed as in the case of Dirichlet boundary conditions. We
substitute the value for ΦE in equation 3 to obtain

aPΦP =
∑

nb′

anb′Φnb′ + aE

δF0 + ΦP

1 − δF1

+ b. (9)

3

Re-ordering terms yields:

(

aP − aE

1

1 − δF1

)

ΦP =
∑

nb′

anb′Φnb′ + aE

δF0

1 − δF1

+ b. (10)

In this case, this algorithm can be implemented using the following steps (in
this order):

ΦE →
δF0 + ΦP

1 − δF1

;

b → b + aE

δF0

1 − δF1

;

aP → aP − aE

1

1 − δF1

;

aE → 0. (11)

In the next sections we will gradually develop a small C++ class hierarchy
for tackling the problem of representing the boundary conditions. We will
start with the traditional, procedural approach to show the advantages of
using the class approach.

3 Hello, Boundary Condition

Let’s start by implementing the boundary conditions as functions. If we
look at the algorithm in the equations 5 and 11 we may come up with the
implementations in figure 2. Note that we pass pointers to those variables
we wish to modify. If we pass the variables themselves, we will modify local
copies of the variables1.

In a number of steps we will transform this code into a small set of equiv-
alent C++ classes. In this process we have an opportunity to demonstrate
the concepts of class derivation and polymorphism.

4 Using Classes

One disadvantage of the functions in figure 2 is the number of parameters that
must be passed each time the functions are called. Unlike a class, a function
cannot be told to remember a context in which it is called: a function cannot
have data members.

1Experienced C++ people would prefer the less-familiar concept of references, but that

does not change the idea presented here.

4

void apply dirichlet (double bval ,
double∗ phiB,
double∗ aB,
double∗ b)

{
∗phiB = bval ;
b += (∗aB)∗bval;
∗aB = 0;

}

void apply neumann(double F0,
double F1,
double delta ,
double phiP,
double∗ phiB,
double∗ aP,
double∗ aB,
double∗ b)

{
∗phiB = (delta∗F0 + phiP)/(1−delta∗F1);
b += (∗aB)∗delta∗F0/(1−delta∗F1);
∗aP −= (∗aB)/(1−delta∗F1);
∗aB = 0;

}

Figure 2: The implementation of the Dirichlet and Neumann boundary con-
ditions (equations 5 and 11) using good-old functions. Note that those vari-
ables which are modified by the functions are passed as pointer, otherwise
one would merely modify local copies of these data.

5

class BoundCondDirichlet
{

public:
BoundCondDirichlet(double bval,

double∗ aB,
double∗ b)

{
m bval = bval ;
m aB = aB;
m b = b ;

}
double Apply(double PhiP)
{

m b += (∗m aB)∗m bval;
∗m aB = 0;
return m bval;

}
protected:

double m bval;
double∗ m aB;
double∗ m b;

};

Figure 3: The implementation of the Dirichlet boundary condition (equation
5) using a class.

6

class BoundCondNeumann
{

public:
BoundCondNeumann(double F0,

double F1,
double delta ,
double∗ aP,
double∗ aB,
double∗ b);

double Apply(double phiP);
protected:

double m F0;
// ...

};

Figure 4: The implementation of the Neumann boundary condition (equation
11) using a class. The implementations and most data declarations have been
omitted here, but should be clear by comparison with the Dirichlet class in
figure 3 and the Neumann function in figure 2.

For this reason we re-implement the boundary conditions as classes; the
results can be seen in figures 3 and 4. The concepts presented there should
be clear by now, we see data members, function members Apply and a con-

structor.
The advantage is that we can create the object once, providing all ar-

guments. After creation, we can repeatedly call the member Apply, without
having to provide the parameter list. For reasons we will make clear later,
we will use pointers instead of ‘normal’ automatic variables.

// one time:
BoundCondDirichlet∗ dirbc = new BoundCondDirichlet(/∗ parameters ∗/);
// ...
// many times:
phiB = dirbc−>Apply(phiP);

The same applies to the Neumann class.

5 Base Classes and Derivation

A disadvantage of the class implementations so far is that the relation be-
tween the Neumann and Dirichlet classes is not clear, and that both classes

7

class BoundCond
{

public:
BoundCond(double delta,

double∗ aP,
double∗ aB,
double∗ b);

protected:
double m delta ,
double∗ m aP,
double∗ m aB,
double∗ m b;

};

Figure 5: An appropriate base class for boundary condition implementations.
In such class data and functions can be made available which can be used by
derived classes.

contain a lot of common code. A solution is to create a common base class.
In C++, classes can be derived from other classes. In this process these
derived classes inherit the properties of the base class.

One of the advantages of using base classes for common data and function
members is the reduction in code size. Base class functionality is programmed
once, then used by all derived classes. But what should be put in a base class?
This is not exact science: the programmer has a choice and must take an
appropriate design decision for each individual case.

We propose the base class declaration which is shown in figure 5. All
data are relevant to the Neumann boundary condition, not all are used for
the Dirichlet case. This decision is based on the observation that these are
the data which are sufficiently general. As said, such decision are subjective
and tend to be debated ad infinitum.

With the introduction of this base class, the derived classes for the Dirich-
let and Neumann boundary conditions become much simpler. The new ver-
sions are shown in figure 6. The members Apply are as before, both classes
use the data members which have been declared in the base class. This is
possible because these data have been declared as protected: this means that
only derived classes have such access rights.

8

class BoundCondDirichlet : public BoundCond
{

public:
BoundCondDirichlet(double bval,

double delta ,
double∗ aP,
double∗ aB,
double∗ b)

: BoundCond(delta, aP, aB, b)
{

m bval=bval;
}
double Apply(double phiP);

protected:
double m bval;

};

class BoundCondNeumann : public BoundCond
{

public:
BoundCondNeumann(double F0,

double F1,
double∗ aP,
double∗ aB,
double∗ b)

: BoundCond(delta, aP, aB, b)
{

m F0=F0;
m F1=F1;

}
double Apply(double phiP);

protected:
double m F0;
double m F1;

};

Figure 6: Here the boundary conditions have been derived from a common
base class BoundCond, see figure 5. The constructors first call the base class
constructors, then initialise the extra data members declared in the derived
classes. The members Apply are exactly as before.

9

class BoundCond
{

public:
BoundCond(double delta,

double∗ aP,
double∗ aB,
double∗ b);

virtual double Apply(double phiP)=0;
protected:

double m delta ,
double∗ m aP,
double∗ m aB,
double∗ m b;

};

Figure 7: In a base class we may add pure virtual members. This way an
interface can be made available on a basic level where the implementation is
not yet available.

6 Base Classes and Polymorphism

In the section in which boundary condition classes were introduced, we have
seen the typical use of the boundary condition objects:

BoundCondDirichlet∗ dirbc = new BoundCondDirichlet(/∗ parameters ∗/);
// ...
// many times:
phiB = dirbc−>Apply(phiP);

In this code we can see that in fact we are dealing with a Dirichlet condition.
Interestingly enough, at the location where Apply is called, we are not really
interested in the type of the boundary condition. We wish to organise the
code such that

• At the location where the boundary condition pointer is created, we
select the boundary condition type;

• Wherever these pointers are used we don’t need to know the exact type.
We call a function Apply that takes ΦP and returns Φb, without knowing
how the calculation took place (Dirichlet or Neumann).

C++ provides a mechanism to achieve just that. Most people consider
this the most difficult feature of object-oriented programming in C++, but
things are really not that bad. The idea is that wherever we are using objects,

10

we only use the interface of the base class. In this interface, one or more
members may be declared which are not yet available, but are required to be
made available by derived classes. This syntax is as in figure 7.

The only things which has been changed is the addition of the Apply

declaration. Don’t try to understand this syntax, this just happens to be
the way it is in C++. The word virtual means: if you call me, I will defer
that call to the implementation in a derived class; the =0 means: we do not
provide an implementation ourselves.

Indeed implementations are present in the derived classes. In the Dirichlet
and Neumann classes we simply add the word virtual in front of the Apply

members2.
How does this affect the usage of the classes? Well, we create a Neumann

or Dirichlet object as before, but this time we assign the result to a base

class pointer. This assignment happens to be valid C++, but also makes
sense, since everything the base class has to offer is also available in the more
capable derived class.

BoundCond∗ bc = new BoundCondDirichlet(/∗ parameters ∗/);
// ...
phiB = bc−>Apply(phiP);

In the last line bc is a pointer to the base class. Still, this will silently call
the Dirichlet boundary modification code.

This has huge advantages. Most code can be written in terms of the base

class properties, without detailed knowledge of the available derived classes.
Perhaps like the following snippet:

string name = AskUser();
BoundCond∗ bc = CreateBoundCond(name, /∗ parameters ∗/);
// ...
phiB = bc−>Apply(phiP);

In this example, we do not have a clue what boundary condition has been
created exactly. But we can still use it. The only location where the details
of the available boundary conditions matter is in the implementation of the
function CreateBoundCond, which is listed in figure 8 We promised to get
back to the point that we are only using pointers to base classes. Note
that nowhere we create an object of the base class type, BoundCond. In fact,
C++ forbids to create objects which do not implement one or more members.
What version of Apply should be called? None has been provided in the base
class. If you attempt to compile the code like

2For clarity, technically this is not necessary.

11

BoundCond∗ CreateBoundCond(string name, /∗ other parameters ∗/)
{

if (name==”Dirichlet”)
return new BoundCondDirichlet(/∗ parameters ∗/);

if (name==”Neumann”)
return new BoundCondNeumann(/∗ parameters ∗/);

else

{
error (”Unknown boundary condition type ” + name);

}
}

Figure 8: The implementation of a factory function. This creates an ob-
ject which is derived from BoundCond, depending on the name provided as
argument.

BoundCond bc = BoundCondDirichlet(/∗ parameters ∗/);

you will simply get a compiler error. We cannot create objects of abstract

types. As shown before, the version which uses only pointers compiles just
fine.

7 Summary & Conclusions

The whole mechanism of introducing such virtual functions and accessing
abstract properties via base class declarations is called polymorphism. It is
one of the central concepts in object-oriented design.

Obviously, we have clear separation between interfaces and realisation.
In a way, the virtual declaration in the base class is a contract: a promise to
all users of that class that every derived class will provide an implementation
of a member Apply, taking the indicated arguments and returning a value of
the appropriate type.

All parts of the program that need boundary conditions can be imple-
mented on the basis of this promise. No knowledge is needed about what-
ever Dirichlet and Neumann conditions may be available. Only where the
boundary conditions are created such details are relevant.

12

