
Polymorphism: a Case Study

Jan van Dijk

NPF — February 20, 2004

Outline

Polymorphism in C++: a case study

I In transport equations: boundary conditions

I We create code for handling boundary conditions

I A base class contains the commonalities

I Derived classes implement specialties

I Polymorphism: in the base class we declare an interface

(without implementing it). That is enough to use the condition.

NPF — February 20, 2004

A Dirichlet Functions

void apply dirichlet (double bval ,

double∗ phiB,

double∗ aB,

double∗ b)

{

∗phiB = bval ;

b += (∗aB)∗bval;

∗aB = 0;

}

NPF — February 20, 2004

The disadvantages of this approach

Look at the usage:

// east side BC:

if (use dirichlet)

apply dirichlet (bval , phiE, &aE, &Sc);

else if (use kwek)

apply kwek(bval , phiE, &aE, &Sc);

else if (use kwak)

apply kwak(bval , phiE, &aE, &Sc);

else if

...

Using functions:

I In the code we must pass these parameters every time;

I Functions cannot remember their context, because:

I Functions do not have data members;

NPF — February 20, 2004

A Dirichlet Class

class BoundCondDirichlet

{

public :

BoundCondDirichlet(

double bval ,

double∗ aB,

double∗ b)

{

m bval = bval ;

m aB = aB;

m b = b ;

}

double Apply(double PhiP)

{

m b += (∗m aB)∗m bval;

∗m aB = 0;

return m bval;

}

protected :

double m bval;

double∗ m aB;

double∗ m b;

};

The Neumann class is similar.

NPF — February 20, 2004

Discussion of the Dirichlet Class

BoundCondDirichlet∗ dirbc = new BoundCondDirichlet(/∗ params ∗/)

// ...

phiE = dirbc−>Apply(phiP)

I Creation is more difficult (one time)

I Usage is simple

I In the usage we hardly see the details (‘this is Dirichlet’)

Disadvantage: We do not use the similarity of Dirichlet and Neumann.

Trick:

1. Introduce base class for common code (coefs, ...)

2. Declare abstract interface (without implementation)

NPF — February 20, 2004

The base class

class BoundCond

{

public :

BoundCond(double delta,

double∗ aP,

double∗ aB,

double∗ b);

virtual double Apply(double)=0;

protected :

double m delta ,

double∗ m aP,

double∗ m aB,

double∗ m b;

};

I Expresses what a BC is

(it has a member Apply)

I All we need to use BC’s

I Shared by Dirichlet &

Neumann

I Boundary conditions can be

derived

I Can use everything in base

class

I These must provide an

appropriate Apply

NPF — February 20, 2004

Dirichlet, implemented as derived class

class BoundCondDirichlet : public BoundCond

{

public :

BoundCondDirichlet(double bval , double delta ,

double∗ aP, double∗ aB, double∗ b)

: BoundCond(delta, aP, aB, b) {

m bval=bval;

}

double Apply(double phiP) {

m b += (∗m aB)∗m bval;

∗m aB = 0;

return m bval;

}

protected :

double m bval;

};

NPF — February 20, 2004

Advantages

Dirichlet and Neumann are both BoundCond-like classes. We can write:

BoundCond∗ bc = new BoundCondDirichlet(...);

(Where we create the BC, we must know the type)

BUT:

BoundCond∗ bc = CreateWhateverBC(name, ...);

phiB = bc−>Apply(phiP);

Where we use the condition, we only see the base class.

Implementation of core code: independent of details.

Only the base class interface matters.

NPF — February 20, 2004

