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Model basics

• Current flows from/to discharge via a transition zone,  
the so-called sheath-area, producing heat in this area.

• Energy is lost by radiation.
• Heat flows through electrode body and feedthrough 
towards lamp wall material (and influences coldest 
spot temperature).
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The cathode: General sheath model

• Transition zone divided in 
4 areas.

• Electrons are emitted 
from surface.

• Electrons are accelerated 
towards ion-production 
zone and create ions.

• Ions are accelerated 
towards surface and 
recombine there.
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Electron emission
• Starting point: Richardson equation
• Workfunction (ϕ) can be influenced by 
electric field at electrode surface. This 
field is generated by the space charge in 
the ‘space-charge sheath’. Schottky 
effect

• Other methods are available, but are 
more complex and give similar results.

• Approximation for the field at the 
electrode surface is the McKeown 
equation.
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Workfunction

• Monolayer emitters decrease workfunction:
–Metals like Na, Dy and Sc can cover the electrode 
surface and change its workfunction.

• Our model:
–Monolayer is partly covering surface.
–Coverage (theta) is calculated by balancing the 
adsorption and desorption of the metals.

• Possible improvement:
–Include ion current/electric field in adsorption 
term.
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Ion current

• Bade & Yos: All energy from 
electrons (je*Vc) is used to 
ionize atoms.

• Problem for high current 
densities: not enough atoms 
present to deliver ion current.

• Solution: Introduce maximum 
ion current with Saha equation 
and Dalton’s law.
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Surplus of electron energy

• If not all energy is used for 
ionization, where does it go?

–Bötticher: energy is lost in 
radiation and conduction to 
plasma, but is not calculated.

–Geijtenbeek: energy is lost via 
expansion to plasma. A significant 
part of the electron energy is 
already removed before the 
maximum theoretical current 
density is reached.
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Other current carriers

• Reverse electron current: 
electrons from ion production 
zone which are fast enough to 
fight the cathode fall.

• Multiply ionized atoms.
• Auger electrons: electrons 
emitted by the impact of another 
particle on the electrode surface.
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Other energy flows

• Heat transport by neutrals.
–Diffusion.
–Convection.

• Initial energy of all particles 
traversing the space-charge 
sheath.

• Vaporization of cathode material.
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Electrode body

• Most important: heat conduction through electrode 
body.

• Surface radiates according to Plancks law.
• Heat conduction coefficient is temperature 
dependent 
(~ 130 W/m/K @ 1500K vs ~ 100 W/m/K @ 3000K)

• Electrode melting behaviour.
• Current through electrode causes Joule heating.

Sheath area
current in/out

heat in/out

Radiation

Electrode body Feedthrough

Foot area, fixed
temperatureHeat conduction
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How valid is the current sheath approach?

• What if densities 
become so high 
that we can no 
longer talk about 
a collisionless
sheath?

• For high densities 
free path lengths 
are smaller than 
Debye-length.
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How valid is the current sheath approach?

• There is no collision-free zone for lamps with realistic 
mercury pressures.

• Therefore the McKeown equation is not valid.

• However, the models using this approach seem to 
give reasonably correct predictions:

(Bade&Yos / Tielemans&Oostvogels, Eldes 1, 
Geijtenbeek “Cathode model”, Bötticher)
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How does an HID anode operate?

• Mechanism seems simple but is just as complicated as 
the cathode sheath.

Simple view:
• Hot electrons fly into the cold anode and recombine.
• This causes heating of the anode by:

–Thermal energy of the electrons I*(5kTe/2).
–Absorption at the surface I*ϕ.

Question: how does arc attachment play a role
in this?
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Solving the equations.

Approach:

Use a simple method to make a model fit for two
purposes:
• Create understanding of electrode behaviour for 
lamp developers.

• Get more insight in electrode physics for electrode 
experts.
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Solving the equations.

Model:

Completely in-house developed Delphi-program
containing:
• 2D rotational symmetric heat conduction model 

solved explicitly (phase resolved).
• Easy to-use and flexible user-interface.
• Sheath model solved using j and q tables.
• Basic anode approach.
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Heat conduction model

• 2D, rotational symmetric.
• Phase-resolved: every iteration is 
one current period.

• Possibility to use various sheath 
models.

• Possibility for spot-attachment in 
the centre of the cathode.
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User interface

• Many options for 
geometry, 
materials and 
wave shapes.

• Large variety of 
retrievable data.

• ‘Simple mode’ for 
straightforward 
use.
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Cathode sheath calculation

j(Te,Vc) and q(Te,Vc) tables are generated at the start of 
a calculation.

Equations are solved by finding the Vc for which 

gives the correct (time-dependent) current for that
particular temperature distribution.
(j(Te,Vc) is a monotonous rising function of Vc)

q(Te,Vc) now gives the heat flux for the next step.

∫∫= dAVTjtI ce ),()(
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Cathode sheath calculation

With result for Vc, j and q and the temperature
distribution other properties like Tipz, ji and je are
calculated.

Problems encountered:
• For spot attachment, calculation area should be 

limited to avoid ‘ring-attachment’.
• When reverse electron current is taken into account 

j(Te,Vc) is no longer a monotonous rising function of 
Vc.
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Monolayer emitters

Two options:
1. Use a different work function of the surface

(e.g. 3eV instead of 4.55eV)
2. Use an adsorption-desorption model.

• Monolayer emitter coverage is calculated as function of 
surface temperature.

• Work function is calculated linearly between pure 
tungsten and emitter workfunction.
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Anode calculation

• Current is distributed evenly over given area.
• Heat input is simply given by q=j*(Va + ϕ), with both 

Va and ϕ as input parameters.

• This clearly needs improvements.



26Central Development Lighting Sander Nijdam 13-4-2005 

Model results: spot-diffuse.
• For certain (heavy) electrodes, 
the solution is dependent on 
starting conditions:
–High initial temperatures 
result in diffuse attachment.

–Low initial temperatures 
result in spot attachment.
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Model results: spot-diffuse.

Results very similar to
measured results.
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Introduction: Gaseous emitter

Idea:
- In hot arc core metal halides decompose into atoms 
and ions:
DyI3 ⇒ Dy + 3 I
Dy ⇔ Dy+ + e-

- Atoms adsorb on electrode surface, stay there for 
some time.

- This coverage with “emitter” atoms lowers the work 
function.
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However

With adsorption-desorption model lowest coverage
on hottest locations (=in spot):
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Problem
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• Lamps containing gas-
phase emitters (Dy, Sc,
Th…) almost always show 
spot-attachment.

• Model calculations always 
show diffuse attachment 
for these lamps with 
realistic currents.
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Conclusions

We developped a useful program for understanding 
electrode behavior and predicting electrode effects.

Benefits:
• Gives visual 2D phase resolved info.
• Calculated electrode temperatures usually match 
measured values reasonably close.

• Electrode behavior as function of current wave shape can 
be predicted quite accurately.

• Allows to extract effective workfunctions and anode 
heating voltages from T-profile measurements.

• User-interface is easy to use and program is very flexible.



33Central Development Lighting Sander Nijdam 13-4-2005 

Conclusions

Shortcomings:
• Electrodes with monolayer emitters almost always 
show spot attachment, while our model predicts 
diffuse attachment.

• Cathode sheath physics needs improvements to be 
more theoretically correct.

• No good physical model for the anode.
• Not possible to easily calculate perfect electrode for 
a specific lamp design (lamp-developers dream).




